DCI: Energy

HS.PS3.A: Definitions of Energy

Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-1), (HS-PS3-2)

DCI: Energy

HS.PS3.A: Definitions of Energy

These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)

DCI: Energy

HS.PS3.A: Definitions of Energy

These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)

DCI: Energy

HS.PS3.B: Conservation of Energy and Energy Transfer

The availability of energy limits what can occur in any system. (HS-PS3-1)

DCI: Energy

HS.PS3.A: Definitions of Energy

At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-2), (HS-PS3-3)

DCI: Energy

HS.PS3.A: Definitions of Energy

These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)

DCI: Energy

HS.PS3.B: Conservation of Energy and Energy Transfer

Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1)

DCI: Energy

HS.PS3.B: Conservation of Energy and Energy Transfer

Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). (HS-PS3-4)

DCI: Energy

HS.PS3.C: Relationship Between Energy and Forces

When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5)

DCI: Energy

HS.PS3.D: Energy in Chemical Processes and Everyday Life

Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS-PS3-3), (HS-PS3-4)

DCI: Engineering Design

HS.ETS1.A: Defining and Delimiting Engineering Problems

Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-PS3-3)

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations in 912 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS3-4)

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-PS3-3)

Crosscutting Concepts

Systems and System Models

When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-PS3-4)

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS3-2), (HS-PS3-5)

Science and Engineering Practices

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-PS3-1)

Crosscutting Concepts

Cause and Effect

Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS3-5)

Crosscutting Concepts

Systems and System Models

Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HS-PS3-1)

Crosscutting Concepts

Energy and Matter

Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-PS3-3)

Crosscutting Concepts

Energy and Matter

Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. (HS-PS3-2)