Solar cells are humanmade devices that likewise capture the sun’s energy and produce electrical energy. (HS-PS4-5)

The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)

Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2), (HS-PS4-5)

Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)

When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)

Photoelectric materials emit electrons when they absorb light of a high enough frequency. (HS-PS4-5)

Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1)

Asking questions and defining problems in 9–12 builds on grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations. Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HS-PS4-2)
Science and Engineering Practices

Engaging in Argument from Evidence
Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science. Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)

Obtaining, Evaluating, and Communicating Information
Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs. Evaluate the validity and reliability of multiple claims that appear in scientific and technical texts or media reports, verifying the data when possible. (HS-PS4-4)

Crosscutting Concepts

Cause and Effect
Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS4-1)

Cause and Effect
Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS4-4)

Stability and Change
Systems can be designed for greater or lesser stability. (HS-PS4-2)

Systems and System Models
Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-PS4-3)

Crosscutting Concepts

Cause and Effect

Systems and System Models